Towards Closing the Gap between the Theory and Practice of SVRG
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Proposed algortihm: Free-SVRG

Alternative algorithm: L-SVRG-D We obtain the optimal mini-batch size for Free-SVRG

(resp. L-SVRG-D) for the usual choice m = n (resp. D= l):

n

Goal: Empirical Risk Minimization

Consider the optimization problem

Algorithm 2 Free-SVRG (or 1-SVRG [5]) Problem: SVRG requires the strong convexity £ > SLLMX
f \ ° . . . B
1 — Parameters: Free inner loop length m, step size «, e SVRG relies on knowing p NI |
r* =argmin ¢ f(x) = — E filz) » | (1) o, el L p* — J | min(b, b)J if % <n< %
veRl | n 4= / pr = (1 —aup) Z (1 — ap) Solution: (3| proposed a loopless version of SVRG. . o ar
where o Improvement: when the variance of the estimate of the _bJ otherwise, if n < m

Initialization: wy = 2" € R?
for s=1,2,... do

e cach f; is Ly .-smooth 0 .
ws — m3—1

fort=0,1,....,m—1do

oradient is high, decrease the step size.
Algorithm 3 L-SVRG-D (Loopless-SVRG-Decrease)

Parameters: step size a, p € (0, 1]
Initialization: w' =2z" € R, ay = a
for £ =0,1,2,... do

e f is L-smooth and p-strongly convex 30 Ly—I)

n(n—1)u—3(nL—Lyay)

where b := \/ %HLLmiXL_ L and b =

Stochastic Variance Reduced Gradient Experiments

Sample vy ~ D
92 — vat(xg) — V fo(ws—1) + V fws1)

=== SVVRG (b=1,m=20Lnax/d) =m= Free-SVRG (b=1,m=n) === L-SVRG-D (b=1,p=1/n)

Algorithm 1 SVRG [}/ Sample vy ~ D

Parameters: inner loop size m%ﬁ, step size «, py ::% 513?1 = 2l — ag, gk =V, (I./c) —V#, (wk) 4 Vf(wk)
k k
Initialization: wy = 27" € RY end form_l t chtt = gF — qygF ) )
for s=1,2,... do Ws = D g DT (W, apsy) = (x", o) with prob. p s :.
20— w._, end for o (w*, /1T — p a;) with prob. 1 —p o ]
for t = 0,1 ~1do end for
— b T Solves several issues with SVRG
Sample 4¢ uniformly at random in {1,...,n} o Inner iterates (z) continuously updated (no resetting) Lyapunov Convergence Theorem 2 epochs epochs
gg T szt(lljg) — Vfi(ws_1) + V fws_1) o Free choice of the inner loop size Figure: Theoretical settings for SVRG, Free—SVRG za.u%”ld L-SVRG-D.
x?r — ng _ agg o Much easier analysis Consider the iterates of Algorithm 3 and let | Left: lg—re.gularl.zed loglstlc-regressmn on zjc.nn.l .
d £ ) Right: ly—regularized ridge regression on YearPredictionMSD.
end for t . . - o2, Sl L )
Ws = ) 4 DiT Algorithm analysis ¢ = ||z — z7||, - (3 — (f(w®) = f(z%)) .
end for

Ifp~+and a5 2/7L, then

2 [gbk} < B0 where B = max{

An essential constant for the analysis:

Problem: SVRG differs from practice
e (Constraint on the size of the loop m
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Lemma: Expected smoothness

residual

Mini-batch size b

m@m= b=1,a"(b)=3.03e - 06
= b=100,a"(b)=2.94e - 04
mtm b=vn=231,a"(b)=6.54e — 04

107* H == b=n=53500,a"(b)=9.39e - 03

l* b=b"(n)=31,a"(b)=9.31e — 05
I

=
Q
w

e [irst iterate reset to the average of past iterates Let v ~ D be a sampling vector. There exists £ > 0 such

that for all z € R,
Evp [[Vu(a) = V£i(a") 5] < 2L (f(z) = f(2")

e No theoretical justification for benefits of mini-batching

Benetfits

e Bigger step size for the first iterations ot the loop,
when the variance is low

0 2I5 5IO 7I5 1(I)0
epochs

Figure: Different mini-batch sizes for Free-SVRG for a [s—regularized
ridge regression problem on the slice data set.

Motivations

e Smaller step size for the last iterations of the loop,
when the variance is high

e (Close gap between theory and practice of SVRG

Example: mini-batching without replacement |1, 2|

In—>b nb—1
= L(b) = ———— L« L .
L= L(b) bn —1 bn — 1

In particular, £(1) = L. and L(n) = L .

Inner loop size
= 1) = == M =2N =% M=Lpna/d = M =m"=3Lmax/U

e Offer theoretical convergence guarantees

=
o
o

Inner loop size m
=@m= n =141691
=0 2n=283382
mdm /M =51499

== 3Lpax/li=m" = 154496

Same total complexity and optimal parameter set-
tings as Free-SVRG (up to constants).

e Demonstrate benefits from mini-batching
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Stochastic Reformulation How to set the inner loop size?

residual

Lyapunov Convergence Theorem 1

=
o
|
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Problem (1) can be reformulated as We found a range of values minimizing the total complexity:.

=
o
&

1 | Let s = |l — 2" 21 8a%LS, (f(w,) — f(z* , If m € [min (n, Lyax/pt) , max (n, L/ )], then bfeo  ©
v =argminE,.p |— Z vifi(x)| = Eo~p [folz)] ,  (2) ¢ u I (flws) = fa7)) 1 L | |
n T — . max 0.0 2.5 5.0 7.5 10.0
vl L =l - where S, = > (1 —ap)™ 17 If a < 1/6L, then the Cn(l) = O ((n | ) log <_>> ' | . . o ceeee .
where E,.p [v] = 1,,. To solve (2), we can use SVRC: i—0 M € Figure: Different inner loop sizes for Free-SVRG for a ls—regularized

iterates of Algorithm 2 converge with logistic regression problem on the ¢jcnnl data set.

(6 < B¢, where B =max {(1—ap)" 1}

Includes the practical choice m = n
P =l (Vo) — Vfulws) + T (w,) A P A

where v; ~ D is sampled at each iteration.
Arbitrary sampling includes all types of sampling.

How to set the mini-batch size” References
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Example: mini-batching without
replacement

Let S C {1,...,n} be a random set such that

Total complexity for mini-batching

The total complexity of finding an € > 0 approximate
solution that satisfies [E [Ha:? — x |§] < ey is

For any fixed inner loop size m
e the total complexity is a convex function of b
e the step size is an increasing function of b
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Let .
otherwise

. {no/b

Then, f,(x) = § 3 file) and V() = 1 3 Vile) |

1€S €8

And for mini-batching (dropping the log term):

3n—bl,.x 3nb—1L }
| m

Cin(b) = 2(%+2b) max{gn_l L

bn—1u

=

~

o
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Figure: The total complexity (left) and the step size (right) as b increases.
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